Multiple-mode diffusion waves for viscous nonstrictly hyperbolic conservation laws
نویسندگان
چکیده
منابع مشابه
RIEMANN PROBLEMS FOR NONSTRICTLY HYPERBOLIC 2x2 SYSTEMS OF CONSERVATION LAWS
The Riemann problem is solved for 2 x 2 systems of hyperbolic conservation laws having quadratic flux functions. Equations with quadratic flux functions arise from neglecting higher order nonlinear terms in hyperbolic systems that fail to be strictly hyperbolic everywhere. Such equations divide into four classes, three of which are considered in this paper. The solution of the Riemann problem i...
متن کاملAsymptotic Stability of Rarefaction Waves for 2 * 2 Viscous Hyperbolic Conservation Laws
This paper concerns the asymptotic behavior toward rarefaction waves of the solution of a genera) 2 x 2 hyperbolic conservation laws with positive viscosity. We prove that if the initial data is close to a constant state and its values at + a3 lie on the kth rarefaction curve for the corresponding hyperbolic conservation laws, then the solution tends as I + co to the rarefaction wave determined...
متن کاملNumerical computation of viscous profiles for hyperbolic conservation laws
Viscous profiles of shock waves in systems of conservation laws can be viewed as heteroclinic orbits in associated systems of ordinary differential equations (ODE). In the case of overcompressive shock waves, these orbits occur in multi-parameter families. We propose a numerical method to compute families of heteroclinic orbits in general systems of ODE. The key point is a special parameterizat...
متن کاملL2-contraction for Shock Waves of Scalar Viscous Conservation Laws
We consider the L-contraction up to a shift for viscous shocks of scalar viscous conservation laws with strictly convex fluxes in one space dimension. In the case of a flux which is a small perturbation of the quadratic burgers flux, we show that any viscous shock induces a contraction in L, up to a shift. That is, the L norm of the difference of any solution of the viscous conservation law, wi...
متن کاملNonlinear Stability of Shock Waves for Viscous Conservation Laws
where u = u{x,t) E R , the flux f(u) is a smooth n-vector-valued function, and the viscosity B(u) is a smooth n x n matrix. We are interested in the stability of traveling waves, the "viscous shock waves", for (1). It is shown that when the initial data are a perturbation of viscous shock waves, then the solution converges to these viscous shock waves, properly translated in space, in the unifo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 1991
ISSN: 0010-3616,1432-0916
DOI: 10.1007/bf02099669